THE QUITE OK AUDIO FORMAT

Specification Version 1.0, 2023.04.24 — goaformat.org — Dominic Szablewski

This document defines the Quite OK Audio Format (QOA). QOA encodes A decoder should support at least 8 channels. The channel layout
pulse-code modulated (PCM) audio data with up to 255 channels, for channel counts 1 .. 8 is:
sample rates from 1 up to 16777215 hertz and a bit depth of 16
bits. 1. Mono
2. L, R
The compression method employed in QOA is lossy; it discards some 3. L, R, C
information from the uncompressed PCM data. For many types of audio 4. FL, FR, B/SL, B/SR
signals this compression is “transparent”, i.e. the difference from 5. FL, FR, C, B/SL, B/SR
the original file is often not audible. 6. FL, FR, C, LFE, B/SL, B/SR
7. FL, FR, C, LFE, B, SL, SR
QOA encodes 20 samples of 16 bit PCM data into slices of 64 bits. A 8. FL, FR, C, LFE, BL, BR, SL, SR

single sample therefore requires 3.2 bits of storage space,

resulting in a 5x compression (16 / 3.2). QOA predicts each audio sample based on the previously decoded ones
using a “Sign-Sign Least Mean Squares Filter” (LMS). This
A QOA file consists of an 8 byte file header, followed by a number prediction plus the dequantized residual forms the final output
of frames. Each frame contains an 8 byte frame header, the current sample.
16 byte en-/decoder state per channel and 256 slices per channel.
Each slice is 8 bytes wide and encodes 20 samples of audio data. A QOA file or stream is decoded with the following steps:
All values, including the slices, are big endian. The file layout = for each frame
is as follows: = read the frame header
= for each channel
struct { = read the LMS history & weights for this channel
struct { = until frame end is reached
char magic[4]; // magic bytes "qoaf" = for each channel
uint32_t samples; // samples per channel in this file = read one slice
} file header; = dequantize the scalefactor [1]
- = for each quantized residual
struct { = transform the residual using a lookup table [2]
struct { = multiply the transformed residual with the
uint8_t num_channels; // no. of channels scalefactor [3]
uint24_t samplerate; // samplerate in hz = predict the sample using this channel's LMS state [4]
uintl6_t fsamples; // samples per channel in this frame = add the dequantized and scaled residual to the
uintl6_t fsize; // frame size (includes this header) prediction to form the output sample [5]
} frame_header; = update the LMS weights for this channel [6]
= update the LMS history for this channel [7]
struct {
intl6_t history[4]; // most recent last
intl6_t weights[4]; // most recent last [1] The quantized scalefactor sf_quant for each slice is
} lms_state[num_channels]; dequantized into sf by:

sf = round(pow(sf_quant + 1, 2.75))
qoa_slice_t slices[256] [num_channels];
[2] Each quantized residual qr is an index into the dequant_tab:
} frames[ceil(samples / (256 * 20))]; dequant_tab = [0.75, -0.75, 2.5, -2.5, 4.5, -4.5, 7, -7]
} goa_file_t;
[3] The multiplication with the scalefactor is followed by rounding
Each qoa_slice_t contains a quantized scalefactor sf_quant and 20 “to nearest, ties away from zero”, i.e. positive and negative
quantized residuals qrNN: values are treated symmetrically. The dequantized and scaled
residual r is thus formed by:

— qoa_slice_t — 64 bits, 20 samples / / | r = sf * dequant_tab[qr]
| Byte[0] | Byte[1] \ \ Byte[7] | r = if (r < 0) ceil(r - 0.5) else floor(r + 0.5)
|17 6 5 4 3 2 1 0|7 6 5 4 3 2 10/ / 2 1 0|
} } —1 } f \ \—] [4] The predicted sample p is the sum of the products of each
| sfquant | qree | qrel | qre2 | qre3 / / | qrl9 | history sample with the corresponding weight, right shifted by
L | | | | A\ |] 13 bits:
p=20
Each frame except the last must contain exactly 256 slices per for (n = 0; n < 4; n++)
channel. The last frame may contain between 1 .. 256 (inclusive) p += history[n] * weights[n]
slices per channel. The last slice (for each channel) in the last p >>= 13
frame may contain less than 20 samples; the slice still must be 8
bytes wide, with the unused samples zeroed out. [5] The final output sample s is computed by p + r, clamped to the

signed 16 bit range -32768 .. 32767 (inclusive)
Channels are interleaved per slice. E.g. for 2 channel stereo:

slice[0] = L, slice[l] = R, slice[2] = L, slice[3] =R .. [6] The LMS weights are updated using the dequantized and scaled
residual r, right shifted by 4 bits:

A valid QOA file or stream must have at least one frame. Each frame delta =r >> 4

must contain at least one channel and one sample with a samplerate for (n = 0; n < 4; n++)

between 1 .. 16777215 (inclusive). weights[n] += if (history[n] < 0) -delta else delta

If the total number of samples is not known by the encoder, the [7] The LMS history is updated by:

samples in the file header may be set to 0x00000000 to indicate for (n = 0; n < 3; n++)

that the encoder is “streaming”. In a streaming context, the history[n] = history[n+1]

samplerate and number of channels may differ from frame to frame. history[3] = s

For static files (those with samples set to a non-zero value), each
frame must have the same number of channels and same samplerate.

