
THE QUITE OK AUDIO FORMAT
Specification Draft 0.3, 2023.04.17 – qoaformat.org – Dominic Szablewski

This document defines the Quite OK Audio Format (QOA). QOA encodes

pulse-code modulated (PCM) audio data with up to 255 channels,

sample rates from 1 up to 16777215 hertz and a bit depth of 16

bits.

The compression method employed in QOA is lossy; it discards some

information from the uncompressed PCM data. For many types of audio

signals this compression is “transparent”, i.e. the difference from

the original file is often not audible.

QOA encodes 20 samples of 16 bit PCM data into slices of 64 bits. A

single sample therefore requires 3.2 bits of storage space,

resulting in a 5× compression (16 / 3.2).

A QOA file consists of an 8 byte file header, followed by a number

of frames. Each frame contains an 8 byte frame header, the current

16 byte en-/decoder state per channel and 256 slices per channel.

Each slice is 8 bytes wide and encodes 20 samples of audio data.

All values, including the slices, are big endian. The file layout

is as follows:

struct {

 struct {

 char magic[4]; // magic bytes "qoaf"

 uint32_t samples; // samples per channel in this file

 } file_header;

 struct {

 struct {

 uint8_t num_channels; // no. of channels

 uint24_t samplerate; // samplerate in hz

 uint16_t fsamples; // samples per channel in this frame

 uint16_t fsize; // frame size (includes this header)

 } frame_header;

 struct {

 int16_t history[4]; // most recent last

 int16_t weights[4]; // most recent last

 } lms_state[num_channels];

 qoa_slice_t slices[256][num_channels];

 } frames[ceil(samples / (256 * 20))];

} qoa_file_t;

Each qoa_slice_t contains a quantized scalefactor sf_quant and 20

quantized residuals qrNN:

┌─ qoa_slice_t ── 64 bits, 20 samples ────────────/ /────────────┐
| Byte[0] | Byte[1] \ \ Byte[7] |

| 7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 1 0 / / 2 1 0 |

├────────────┼────────┼──┴─────┼────────┼─────────\ \──┼─────────┤
| sf_quant │ qr00 │ qr01 │ qr02 │ qr03 / / │ qr19 |
└────────────┴────────┴────────┴────────┴─────────\ \──┴─────────┘

Each frame except the last must contain exactly 256 slices per

channel. The last frame may contain between 1 .. 256 (inclusive)

slices per channel. The last slice (for each channel) in the last

frame may contain less than 20 samples; the slice still must be 8

bytes wide, with the unused samples zeroed out.

Channels are interleaved per slice. E.g. for 2 channel stereo:

slice[0] = L, slice[1] = R, slice[2] = L, slice[3] = R …

A valid QOA file or stream must have at least one frame. Each frame

must contain at least one channel and one sample with a samplerate

between 1 .. 16777215 (inclusive).

If the total number of samples is not known by the encoder, the

samples in the file header may be set to 0x00000000 to indicate

that the encoder is “streaming”. In a streaming context, the

samplerate and number of channels may differ from frame to frame.

For static files (those with samples set to a non-zero value), each

frame must have the same number of channels and same samplerate.

A decoder should support at least 8 channels. The channel layout

for channel counts 1 .. 8 is:

1. Mono

2. L, R

3. L, R, C

4. FL, FR, B/SL, B/SR

5. FL, FR, C, B/SL, B/SR

6. FL, FR, C, LFE, B/SL, B/SR

7. FL, FR, C, LFE, B, SL, SR

8. FL, FR, C, LFE, BL, BR, SL, SR

QOA predicts each audio sample based on the previously decoded ones

using a “Sign-Sign Least Mean Squares Filter“ (LMS). This

prediction plus the dequantized residual forms the final output

sample.

A QOA file or stream is decoded with the following steps:

▪ for each frame

▪ read the frame header

▪ for each channel

▪ read the LMS history & weights for this channel

▪ until frame end is reached

▪ for each channel

▪ read one slice

▪ dequantize the scalefactor [1]

▪ for each quantized residual

▪ transform the residual using a lookup table [2]

▪ multiply the transformed residual with the

scalefactor [3]

▪ predict the sample using this channel's LMS state [4]

▪ add the dequantized and scaled residual to the

prediction to form the output sample [5]

▪ update the LMS weights for this channel [6]

▪ update the LMS history for this channel [7]

[1] The quantized scalefactor sf_quant for each slice is

dequantized into sf by:

 sf = round(pow(sf_quant + 1, 2.75))

[2] Each quantized residual qr is an index into the dequant_tab:

 dequant_tab = [0.75, -0.75, 2.5, -2.5, 4.5, -4.5, 7, -7]

[3] The multiplication with the scalefactor is followed by rounding

“to nearest, ties away from zero”, i.e. positive and negative

values are treated symmetrically. The dequantized and scaled

residual r is thus formed by:

 r = sf * dequant_tab[qr]

 r = if (r < 0) ceil(r - 0.5) else floor(r + 0.5)

[4] The predicted sample p is the sum of the products of each

history sample with the corresponding weight, right shifted by

13 bits:

 p = 0

 for (n = 0; n < 4; n++)

 p += history[n] * weights[n]

 p >>= 13

[5] The final output sample s is computed by p + r, clamped to the

signed 16 bit range -32768 .. 32767 (inclusive)

[6] The LMS weights are updated using the dequantized and scaled

residual r, right shifted by 4 bits:

 delta = r >> 4

 for (n = 0; n < 4; n++)

 weights[n] += if (history[n] < 0) -delta else delta

[7] The LMS history is updated by:

 for (n = 0; n < 3; n++)

 history[n] = history[n+1]

 history[3] = s

